skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buchbinder, Sidney"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate a path to scalable, wavelength- multiplexed RF/mm-wave-photonic front-end systems-on-chip for radar and extreme massive MIMO arrays, in 300mm-foundry 45nm RF SOI CMOS. We demonstrate mm-wave-to-optical sensing elements comprising low-noise amplifiers (LNAs) mono- lithically integrated with triply-resonant photonic microring- resonator based modulators. The “photonic molecule” modulator concept breaks the conventional ring modulator conversion efficiency-bandwidth tradeoff and provides optimal performance RF-photonic applications, while supporting high bandwidth den- sities. We show a first experiment with projected noise figure of 24dB at 57GHz (30mW/element, -45dBm RF-input, 6dBm laser LO). The elements are tileable at small pitches, enabling photonic disaggregation of large-scale phased arrays. 
    more » « less
  2. Adiabatic microrings with opposing p/n contacts achieve full carrier sweepout in reverse bias and energy-efficient carrier injection in forward bias, exhibiting 200GHz/V peak shift in C-band for athermal tuning over a 220 GHz range. 
    more » « less